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1. INTRODUCTION AND SUMMARY

An enduring problem in electromagnetic theory is that of calculating

the response of a horizontal wire over earth to incident electromagnetic

fields. An approximate solution of the problem that is widely used is

obtained by regarding the wire over earth as a transmission line.

The basic unknown of the transmission-line approach is the approxi-

mate relationship (from field theory) between the line waves and the

electromagnetic fields in the earth; this relationship enters the

transmission-line formulation as a surface impedance for the ground

plane.

The purpose of this paper is to present a heretofore overlooked

mo9Il formulation and exact solution to the wire-over-ground surface-

impedance problem. The surface-impedance model of section 2 results

from the joining or transmission-line waves to purely TM (transverse

magnetic) electromagnetic soil fields. More precisely, we also show

(sect. 4) that the TM surface impedance arises from a purely vector-

potential formulation of the wire-over-ground problem, if the model

assumed in section 2 is granted. It is then possible to derive (1) the

line-inductance parameter, (2) the "charge" distribution, (3) the finite

width of dominant wave localization over the ground plane (derived
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consistently with the line-capacitance parameter), and (4) the surface-

impedance boundary relations, all from the vector-potential solution.

The zero possibility of certain TE (transverse electric) field compo-

nents (i.e., all omitted field components) follows automatically from

the vector-potential solution. The vector-potential model is indistin-

guishable from the commonly accepted definition of a surface-impedance

loaded transmission line. This paper does not consider the extent

to which higher order waves, excluded from the TM model, compromise

the TM line response (predominantly at high frequencies, where the

transmission-line "radiation resistance" is large).

Our surface impedance does ndt agree with either the low-frequencyI
surface impedance in the work of Carson i or the essentially identi.cal

low-frequency surface impedance that is a limiting case of the Wait 2

formulation of the wire-over-ground problem. At higher frequencies we

find a guided surface wave and surface impedance, unlike the results in

the paper of Kikuchi.
3

Section 3 is devoted to the two-dimensional inhomogeneous plane

waves resulting in the surface-impedance model. The connection between

the waves and the complex refraction angle formalism is discussed.

1J. R. Carson, Bell Sys. Tech. J., 5 (October 1926), 539-554.
2James R. Wait, Radio Science, 7, No. 6 (June 1972), 675-679.
3H. Kikuchi, Electrotech. J. Japan, 2, 3/4 (1956), 73-78.
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2. CALCULATION OF Zg, PER-UNIT-LENGTH SURFACE IMPEDANCE

I first describe the situation at hand and give the central re-

sults. The derivation and discussion of the surface-impedance model is

then taken up.

A horizontal wire of radius a, lying at height h over planar earth,

is regarded as a transmission line in essentially the same sense as the

Beverage or wave antenna.4 The wire is highly conducting and character-

ized by a prescribed (pf:-unit-length) internal impedance, Zi, where

Zi = R. + iwpi; the resistance, Ri, and inductance, .i. are functions of

radian frequency (w = 2nf), and f is the usual cw frequency parameter in

hertz.

The earth is characterized by a scalar, frequency-dependent complex

dielectric-response function, 5 £(w) where E(w) = c1 (w) - ic (). The

earth conductivity is 0(w) = we 2(w) = a0 + we 2r(w), where a0 is a con-

stant dc conductivity and 2r is the remaining loss part of e2

i wt
I take here an e Fourier convention; therefore, the line propaga-

tion constant6  is y = a + io, a(w) is the attenuation part, and v(w) =

w/8Vw) relates 0 to the phase velocity, v. The square of y is

4See, for example, J. A. Schelkunoff and H. T. Friis, Antennas
(Theory and Practice), John Wiley and Sons, Inc. (1952).

5j. D. Jackson, Classical Electrodynamics, second edition, John Wiley
and Sons, Inc. (1975), p 309.

6 R. W. P. King, Transmission Line Theory, Dover Publications, Inc.
(1965), p 91.
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2 (1)i~e

Y iWC(Z + Z. + 1 e)
g 1

where X e is per-unit-length external inductance and C is per-unit-length

capacitance. The values of C and £ are exactly the values calculatede

for a wire over a perfectly conducting ground plane (sect. 4). I assume

no shunt conductance (G = 0) for the wire.

The wire as a transmission line is complete once we know the per-

unit-length surface impedance for the earth presence, namely

Zg = Rg + iX , (2)

where R is resistance and X is reactance. I find for Zg the result

Zg = 0.5c 1  1 + + exp[i(,1 - 0.5 ,2)] . (3)c 2)/ ]

The parameters are given by the following seven expressions

(0 = 4rlO-7 H/m):

= C/ww 2(6 + C2) , (4)1C2

tan-1 (.5(C 2/E1 )[1 - (C 1 /C2 J2] (5)

c 2 =(F2 + F 2)/2/w2( C + E2)2 (6)

8



= tan-1 (Fi/Fr) (7)

Fi = (RC- - 1 2 - 2)

+ 2 1 021Pe -(t £2)C

2 2(

1PE 21, + X£1 C*E+ 2.c

- 2 C 2( Ri -W 1 0C2 ) , (9)

w = 2vh . (10)

Thus, if we substitute Zg of equation (3) into (1) and extract the

positive root6  Y O + ia, we completely define the uniform

transmission-line parameters with respect to the basis waves from which

the well-known response solutions 7'8 for the terminated, finite-length

line with arbitrary excitation are constructed.

The transmission-line voltage is V with a current I on the upper

wire. It is helpful to regard the line response as a guided surface

6R. W. P. King, Transmission Line Theory, Dover Publications, Inc.

(1965), p 91.7R. F. Gray, Nuclear Electromagnetic Pulse Simulation by Point Source

Injection Techniques for Shielded and Unshielded Penetrations, Harry
Diamond Laboratories, HDL-TR-1737 (December 1975).

8See, for example, A. A. Smith, Jr., Coupling of External Electro-

magnetic Fields to Transmission Lines, Wiley Interscience (1977).
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wave and to first focus attention on the earth-surface magnetic field.

For brevity and compactness of expression I have decided, in most of

what follows, to write down only the frequency-domain representatives of

responses (denoted by underlined symbols; all responses not underlined

denote real responses) and to suppress the explicit conversion of the

underlined quantities to real responses (unless confusion would

arise). In our right-hand coordinate system, x is upward from the

ground and z is along the transmission line. For calculating per-unit-

length Z in the frequency domain, it is convenient to suppose an

unbounded line with a Dirac impulse point-source line-voltage generator

at z = 0 and to single out the +z-directed Fourier transmission-line

traveling waves.

The TM Z g follows from a single model assumption of simultaneous

contributions from all y locations of surface magnetic field to the

transmission-line return current -I, namely at x =0, and some fixed z,

-I(t) = dy H y(0,y,t)

Hence, in general, the y integral of Hy must exhibit common time depend-

ence or

H (0,y,t) = h1 (t)h2(Y)

10



where h1 and h2 are two real functions. It follows from fO dy h2

immediately that space frequency ky is zero in the line waves. We may

then restrict ourselves again to h1 (w,z) in

-1 = fl dy H y(0,y) = WH Y9 exp(-yz) , (11)

where H is a frequency-dependent constant and width parameter-yg

w = fL h (y) dy.

The soil fields in the limit x = 0- must also have k = 0 and sharey

common h2 (y) and hi, since H y(0,y) is the prescribed soil field boundary

H distributed at x = 0 over all y instantaneously, and all soil fields
y

are derivable from Hy. In (11) we could prescribe heuristically from

magnetostatics the results

YH-yg

where
H (0,0)H = -

-yg 2

and
2hw

h (y) = 2h
2 21t(h 2 + y2 )

hence, f h2 (y) dy w and h2 (0) = 2w/2nh = 2 from equation (10). In

section 4 we show that the prescription is not necessary since, if the

prescription is a bit further elaborated, it has the same results as the

11



vector-potential calculations. In the earth only the TM electromagnetic

fields Ex, Ez , and Hy are kept, whence

aH

-x iWE az

aHE -y (13)

-z iWE ax

--Z 3 X (14)

-y iWV0 \ax 3z(

++

-ik-x
On taking the exponential dependence e , if we substitute equations

(12) and (13) into (14), we obtain

W2 I.QCH =(
2 

+ 
2 )t0 -y (k k y

or
+2 

2
k 0E

where ky = 0.

+

Since c is a scalar, k-E = 0 is the statement of div D = 0 in the
+

soil. Normal D must be continuous at x = 0; thus, the connection at x =

0 of line wave to soil waves involves only the integrated (defined)

charge per unit length g = f dy D*x taken with respect to upward

normal x. Or, if we use equation (12) to evaluate , we obtain

'D

S(x =0) =  -:- dy =Y (15)
iW 3 z - - - i -( 5

12



which is just the continuity equation

iwq(x = 0) = - (-1) = -iwCV , (15a)

where equation (11) has been used in (15) (the right side is also the

time derivative of eq (72)). (Remember that Swire = -S (x 0).)

We need now only superpose Fourier waves in

S h2(y)

H (X) 2 2 7 dkz A0 (kz)eXp(-ikx) exp(-ikz) (16)

where

k =-( 2 - k , (17)

constrained by k2 = I0 2; the square root in equation (17) taken in

quadrant 4 yields downward-traveling damped waves in the earth.

We first place x = 0 in equation (16), integrate (16) over dy from

ik'z
- to -, and then equate it to (11); we then multiply by e and

integrate over all z, using the following representation of the Dirac

delta function 6,

1/271 fo dz e = 6(k - k)

All this produces

13



ik'z H
0o(kz yg fCdz e e Z O(z) y (18)

z

In (18), equation (11) is restricted to z > 0 by the Heaviside step

function 6(z) = 1 (z > 0), O(z) = 0 (z < 0). Finally, if we insert

equation (18) into (16), and close the contour in the lower half plane,

we find, from the pole at

k z = -iy (19)

and equation (17), the basic solution

+, '42 2 1/2,
(x) h (y)H expji(yjWC + ] exp(-yz), x 4 0 , (20)-y h2  y9 0

from which E follows, according to equations (12) and (13).

The per-unit-length surface impedance satisfies equation (13) at

x = 0 written as

E (0,y) e-YZ Ezgh2(y) = wZgH yh2(y)e-YZ

where e -YZ E = E (0,0)/2, analogous to H ; hence, using equationso-zg -z -yg

(20), (13), (11), and h2 (y) (below eq (11)), and integrating the above

equation over y, we find

eg 0 fiC~ (i + Y) 1 2 ()

-I wWe

14



Therefore, also, wZ = E z(0,0)/H y(0,0) = -k x/wc. The Z solutiong - y

follows from inserting equation (1) into (21) squared. The details are

given in appendix A.

We must clarify an important point concerning the total (reaction)

electric field at x = 0. A derivation of the transmission-line voltage

equation for the case at hand gives

= (7 +inc inc
g i + (h,z) - E (0,z) (22)

_ =-I(g+ i+ We) -Z -Z

which includes, for generality, a distributed electric-field excitation

(the wire is assumed perfectly thin). Equation (22) follows from the

well-known

§(E + En)-dk = 0 (23)

taken about a rectangular path, of thickness Az, over x = 0 to h. We

first ignore £ and proceed with the usual Taylor expansion by taking
e

from (23)

§E = _ t = - " applied voltage" . (24)

For each path segment, we also define a reaction voltage for path a + b

as V = _fb E.dt-. Thus, by invoking only the sign of dt, we correctly
ab a

add to equation (24) as yet unspecified electric fields along the paths.

We ignore Ein c and invoke Z.I = E (h,z) and Z (-I) = E (0,z), according
x 1- -z g - -z

15
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to my current sense convention on choosing a clockwise traverse of the

paths. Finally, we add to the right-hand side of (22) (shown completed)

the contribution

-iwX I(Az) = -§E d = (Az) (25)

where V' is the voltage and E' is the electric field contributions in

linear superposition due solely to the external inductance £ The
e

important point is that the expression

E' = 0 (26)
z

in the horizontal paths of (25) is the correct approximation in general,

regardless of Zi and Z being nonzero. For this reason, E in equationZg -z

(21) is the correct superposition component to total reaction E-z

(x 0).

To show explicitly that equation (26) is correct, we need only exam-

ine the signless quantity

IN'I = Az dt

f dz ft dt f_ dy fO dx x H(0,y) (27)

for an infinitesimally thick transverse-line slice, where +" is a

Poynting flux contribution due solely to the of (25). Using the

16



earlier voltage definition, substituting equations (11) and (25) into

(27), and integrating by parts with 1(0-) = 0, we find

2. I2(t) z

IN'I e 2

this shows that IN'/Azl is indeed the correct magnetic energy per unit

length for the line in the presence of full conductor impedance. Of

course, we redefine t = 0- for any plane selected, but the result is

true in complete generality for the arbitrarily excited and terminated

line, since total S+ is linear in the superposition voltage component

V-.

Because of equation (25) it is clear that in a consistent approxima-

tion, the product 2. w must act instantaneously; hence, both 2.e and we e

must be real and constant (independent of frequency). Parenthetically,

C (through the upper medium dielectric constant E ) can depend onup

frequency (9e C = UPc UP(w), where pup is a real constant), but, for an

air medium, the effect of c (w) is insignificant.up

Qualitatively, the earth in this model is infinite and spatially

homogeneous, so that no upward-going waves originate in the soil vol-

ume. In the air the dominant waves are the one-dimensional line waves

with k = kz z Higher order waves bring in ki , wave-vector components

perpendicular to k z.
z

17



We can roughly estimate when these higher order waves containing k

in the air will be important. To do this we can borrow an argument from

Kompaneyets9 which originally applied to limits of accuracy in radio-

location. The argument is that one attempts to confine these higher

order waves roughly in a half cone flared about k z, so that the waves

contribute to a forward directivity of the "antenna." Similar isosceles

triangles are applicable with height £0 or 8 and half base length

w 0/2 or k ; hence, the wave confinement is estimated at

w 0/2£ 0 = k /, and the space-frequency wave-uncertainty relation

is 4(w0/2)k1 ) 2w. Eliminating k we find

(8w0 )
2 > 472(/A)

where 8 = 2w/X, or

(Ph) 2 > w22 0 /A )  (28)

if w0 /2 = h is taken as the appropriate estimate. For fixed £0 versus

£0/X, £0/X = 0.25 is roughly the onset of the higher order waves, and

£0/X = 1 roughly the fully developed higher order waves. Thus equation

(28) gives about

2
(0h) 2 2 + 10

which indicates roughly the buildup region of the higher order waves.

9A. S. Kompaneyets, Theoretical Physics, Dover Publications, Inc.
(1962), p 179.

18



usually, in transmission-line applications one attempts to have (Bh) 2 <<

1. For the infinite line, of course, £0 is any line section of

length £ = A, which is instantaneously full of the waves of interest

(steady waves, now).

Any E(w) that exhibits 2/ 1 < 1 at high frequency will yield a

reactance crossover (Xg = 0), followed by increasingly negative Xg, at
gq

some high frequency. It is easy to see directly from the Maxwell equa-

tions that the impedance must be a pure negative reactance if a = 0 re-

sults from soil with c2 = 0 (sect. 3). Hence, the reactance X is also

negative when c2/ is small. The X crossover can be calculated

from I - 0"5 2 = 0, using equations (5) and (7). This equation results

in

6 4 2(4
6 + n (2r - 1) + n (4r - 5) + 2r - 3 = 0

r = (£e + £i)C/J 0 I

where Ri = 0 and T) = E2 /C. Usually, r is small, so we can solve

6 4 2
- - r0 5 - 3 = 0 resulting in n0  1.73 or c/E: = 1.7. Solving

0 0 0 21

the r * 0 equation perturbatively (n = n0 + X), we find roughly X

-1
-r/3n 0 to order n0 . The zeroth solution is accurate enough for most

purposes, though easily made exact numerically.

19



3. TWO-DIMENSIONAL INHOMOGENEOUS PLANE WAVES

From equations (17) and (19), the wave vectors kx and kz are

kx = -(A- iB) , (29)

k = - ic .
kz

Thus, A and B are positive definite for the quadrant 4 square root in

equation (21). We can solve equations (17), (21), and (29) for A and B

(the only practical way to obtain these quantities):

A =2ww( R , (30)

B = W(w 2 R - C1x) . (31)

On the other hand, we can take the square root in equation (21)

directly, producing

A -iB = + P2)114 [cos (n/2 + /2)- i sin (7/2 + /2)] (32)

where

0= tan 1
20[Pl/-P21)]

20
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with

2
P1 C0  2 WC(R+ + = 2AB

P2  P 0 2 1 -W C[Xg + e + = A2 - 2

The root A - iB of equation (32) lies always in octant 7 of quadrant 4,

and A and B satisfy the phase identity

+ tan- [2AB/(B2 - A2]] = tan- (-B/A)
2

which holds also for the other root (octant 3) -A + iB. This root

follows fiom the previous identity under A + -A, B + -B; the angles are

then reckoned in the opposite sense (positive clockwise from the -x

axis).

The unique situation here is that this model excludes octant 8 of

quadrant 4 since the e2/C 1 >> 1 limit corresponds to the A = B limit

between octants 7 and 8, approaching from octant 7 or A < B. As -2 + 0

the other boundary of octant 7 is reached.

In the lossless limit (2 = 0, R. = 0), one finds R = 0, a = 0,
2 g

A 0, -T-/2, 2 0, and lossless B =B, or

B0  {( IC[Xg + W(le + - C0 1 W2)2}1
/ 4 . (33)

21



This limit is correct because the divergence of the real part of the

complex Poynting vector must vanish in the absence of a losses; hence,

R must vanish so that a vanishes and a8 + AB = 0.

Clearly, the branch is unique since Zg is correct* for e = LI. and

the analytic continuation of Z to E = 1 - i2 is the desired answer.

In order for AB to be always positive, there is a formal restriction

that R. < ate/c0' Normally, the inequality is never violated.

The real soil at high frequency is in the region of c2/C < 1, and
2 1 <1 n

the lossless solution just given is merely an idealization of the real

case with A small but nonzero. The qualitative point here is that the

damping in the soil tends to be purely reactive (pure being E2 = 0) when

E 2/A1is small, yet the high-frequency solution still exhibits a pro-

nounced skin effect with B-  small. Thus, the real soil naturally

favors this octant 7 solution at both high and low frequency.

It is evident that the derivatives aH /ax and aE z/ax do not enter

explicitly the joining of the transmission-line solution to soil

fields. Tangential E = -Z I is known and is sufficient to predict the-z g

purely transmitted fields into the soil. It is of interest now to see

*It is readily shown that our Z solution for E_ = 0 is the one of
two possibilities that exhibits X real for unrestricted e

2.2



how the wave-vector formalism relates to complex refraction-angle

formalism and also to surface waves of the more familiar kind. We first

need to collect a few results.

First of all, we can write the complex wave vector as

+ +
0 - la0n

+ +
where the normal m to the constant-phase planes and normal n to the

constant-amplitude planes are

+
m = -cos %x + sin z

+

n = -cos 2 x + sin 2 z

where x and z are unit vectors, and angles I and *2 are positive

counterclockwise from the -x axis. The real wave number 0 is

80 = Re(k-m)

We must demand that -A + iB =8 0 m- i 0 n and -ia + 8 m - ia0n;

Fhence, the following four relations must all hold simultaneously:

8=8 0mz

23



0Oz

Pm = -A

0 x

The true phase velocity is therefore

V m= wlo= (w/$) sin 1

We also find that

ao= (A 
2 + a 2)1/2

a0 = (a2 +~ B 
2 )1 /

2

2 2 2 2 2 2
a+ a~ +-A +-B =a 0+~ , (34)

2 2 2 _2 2 2
A +~ -a -B a8 0 a ' (5

=1 tan -1(a/A)

=2 tan (a/B)
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Consider now a complex refraction angle 6 The vector analogous to

m is

ni = -Cos 0 1 x + sin 0 z

The phase of the refracted wave is

k-x k kn, .x

where

k (Ioew2 0)1/2 1 1/2 ( K

1 0 n- K

Here, n and K are given by the octant 8 square root

Q + QE 1 j]1/2

w h e r 
Ej Q +E 

1 /2He c e

22

1 2

where Q2 is a real positive definite quantity, to be determined momentar-

ily.
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The k (-A + iB)x + (B - ic)z form of k is identical to the k1n I

+
k form if

cos e1 = (*) 112 (A - iB)/j/2 ICwS , (36)

sin 6I = (E*Q) 1/2 (8 - / 2 IeICW (37)

(where E* 1 + iE2 ), since (e*S2) 1/2 = n + iK and

2 2
n + = QI -

The formal Snell law is

kln-z = k
1 z

or

sin e I = kz/k 1

One evaluates the 01 expressions, equations (36) and (37), to find

Cos 01 = [(nA + KB) - i(nB - KA)J/ 1/2 IEIS2 (38)
0

j sin 0, = [(nB + ca) + i(KO - na)/10 1/E:Q (39)
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The factors in parentheses are positive definite since a/a > 1 and n/K

> 1 (for E1 > 0).

Note now that the dispersion relation is

+2 2+2 2

k= 21n1  P j0e 2 (40)

+2 +2
since n1 = 1. Using (38) and (39) above, the condition n1  1 in real

and imaginary equality gives the equation pair

E 1QA2 + B2  a 2  B B2 ) + 2E 2 Q(QB + AB) = 0 EJ 222 2 , (41)

E 1 (aB + AB) (s2 /2)0(A
2 + B2  a 2 B2) (42)

2( 2

if we use n - 2 and nK above to reduce. In unknowns 2(AB + aB) and

A2 + a2 a a2 
- B2, the solution to the equation pair is

2 82 2 2 i2
A + -a -B V 0OE I (43)

2(aB + AB) = 2 0 2 (44)

We see immediately that if aO + AB (and Ei) is positive definite, 2 must

be the positive definite
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A 2 + 62 2 B2 I 2= IA--~ - a - B 1/) 45)

Hence, the real equality equation (43) of the dispersion relation solu-

tion simply defines

A2 + 82 2 B2 iA2 + a2 2 _ B2

or elimination to the identity (i.e., x = IxI is true on eliminating the

left-hand side, resulting in lxi = lxi). A proof of this absolute

condition is given in equation (60) below. Note that one can write

equivalently

+ + +
n 1 = n - in

r I

with pure imaginary inI and pure real nr

I~ ^ l /2

n = [-(nA + KB)x + (na + Ka)z/ 1 IEIW2 , (46)
r 0

n, = [-(K6 - na)z - (nB - KA)x]/0 IW (47)

+2Then n1  1 becomes

+2 +2
n n = 0I

r In 2rnI 03
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These equations are identical to equations (41) and (42) when reduced

2 2
with n - K and nK. We see that vector orthogonality between
+ +

nr and nI  always holds; however, this does not imply that
r I

Re(k)oIm(k) = 0 in general, since

-Re(k)*Im(k) = aa + AB

The meaning of the other dispersion relation, equation (44), arises

from forming both the complex Poynting vector and the divergence rela-

tion (for simplicity, let us suppose y = 0 with field amplitudes speci-

fied at x = 0). The Poynting vector is as follows:

which we evaluated from only

+ w+)w

the divergence relation is

+ +2
-V*Re(S) = (o/2)1 lI , (49)

+2 +.+
where IEI= E.E*. From (49) we obtain two results: first, using equa-

tion (34),
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I 1/1I_ _ + 2)/2/Wlc , (50)

0 0

and second, also using c8 + AB a 0 0m.n,

mn n 1 2= OC s 0 )/2a 0 0 WE 1  (51)

2 2 2 2
On imposing a0 - a0 + 0 _ a1, equation (51) is the same as equation

(44) of the dispersion relation. That cos (ti - *2) is even means that

the power spectrum of the ohmic heating density is the same for left-

going line waves, just as for right-going waves. The left-going waves
+ +

are obtainable by y + -y (z < 0); hence, m and n are mirror symmetric

across the -x axis (I and iF2 are then negative and clockwise from the

-x axis). It is evident that the wave-creation origin can be placed at

any z. The validity of the result Z with respect to the terminated

line is due to phenomenological terminations being local (extensionless)

and hence not changing y(w) on reflection of the elementary basis

waves. The terminations introduce purely temporal delays (as well as

amplitude changes) between incoming and outgoing basis waves in the

finite line solution.

It is appropriate now to solve for 0 and explain the apparent medium

eS aspect of the previous work. No matter what k is (see app B), one

must have the identity (using eq (50))
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1112 2 (WU0]2/1 21 (a2 + 02o  , (52)
+IEI /IHi k 0 0 c )wE (52)

+2 +2 2

where I1k I = Ikk*l. On substituting 1k I = p01ICw 2Q into equation

(52), and using the definition of Q in (45) and also in (35). we find

the ratio R on squaring to be

R (a2 - 2)2/(82 + a 2 = W8 ,C12/(a + a . (53)

We can also complete the square using cos (' - *2), from equation (51),

resulting in

(a2 - a2)2 = (02 + a) - a /22)(o2 - 2)2 sec 2  (54)

Forming R from equation (54) and equating it to (53) gives

(a2 + a2) 4 = 
4 WIEi [1 + (eC/IsI2 ) tan2  -)

hence, from (52) we hav

= /-j12(oE)1/2 . (56)

Using (55) we find explicitly that

0-1/2= + (E2/ICI 2) tan2  P - 2 (57)
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The vector norms are now

+ 021/2 (,+,2)1/2 a- 1 2w(I 0  (58)

+2 12 2
1k 1/1 2 a2

the ratio is 1 for a homogenous plane wave having Re(k) parallel to
+

Im(k) (for example, S approaches 1 arbitrarily closely as 2/C 1 tends

to infinity).

From the standpoint of equation (56), the transmission-line surface

wave transmits into an apparent medium with spatial anisotropy due to

*1 - *2 in equation (57), despite the fact that the bulk medium is iso-

tropic with respect to E. The deviation of Q from unity is typically

such that the right-hand side of (57) exceeds unity by about 5 percent

or so at the higher frequencies.

Clearly, the bulk medium e is still E and not Qc. To see this we

can use a as an example and examine heating per unit volume or

,w f+ dw +1 2

" .E dt = 1/2 f 27! , 2

+2
Using the k norms above, however, along with (48) we find
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+ 2 +2+2 2 2 (~ 2
tEl Iki1 IHI /W tEl 0 Ui/Q2lElJIHl

and also

+2 +2 +2 2 22 22 2
I'l Ik IIHjI W Q 12=~k I i 2(J /S2E1)IHIE-0 0 -

with the underlined factor equal to 1 in the last equatLon. Thus,

substituting IEt2 into the integral exhibits only the partial apparent

medium aspect of equation (56).

The partial quadrature solution, entirely in terms of 0' 0' ,

and 2 proceeds from the norm relation

2 2 2-1
a0 +60 0 II

and the absolute value of equation (51), which becomes

a0 %= 1oO1(d2 sec - 4) / 2 "

solved by square completion. We find

a'% + [o = Q0 - IEIW 2  +  
0o12u sec / - 2

We obtain a0 and B0 by solving the last equation simultaneously with

33



2 2 2
0 Q0 

= 0E
2W

2 2 2 2
(which is equivalent to 2 - 0L 12 0 - 01), once for Q 0 - and

once for 0= 0 - a0 (I shall not write down the derivation). This

quadrature is redundant, practically speaking, since the most feasible

solution seems to be solving A, B, a, and a, as stated previously, and

then obtaining I' *2' 0' a., and a., successively.

If we now consider a different problem and prescribe independently

of the e medium

e=0

+8 sin 0

+ 1

for an infinite solution plane (where 0 is the real incidence angle

from vertical), then the usual Fresnel equations determine the transmit-

ted amplitudes. We can solve the 0 equations given above by way of

cos 1 = pO e

(using also sin 06) for p and y Thus, in this case we obtain
1 p0  0
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A = 1/2Ln cos y0 - K sin y0

(59)

B = P0 11 12 Cos '0 + n sin YO)

and this solution (trivially allowing for a different e convention)

is identical to that given by Stratton,10 for the well-known problem

just stated. (My B, A, n, K, Y., and a correspond to Stratton's

•1/2 1/21/2p 0  and a 2 ) This problem is a homo-

geneous plane wave -1) for which the limit e2 = 0 yields Y0 = K =

B = 0, A * 0, and real refraction angle = 81 In this case, reac-

tive damping (A = 0, B * 0, E2 + 0) is not possible.

Returning now to the transmission-line surface-wave problem, equa-

tions (59) for A and B remain true but a and 6 are no longer pre-

scribed, and 1I has been restored. This exact special case in which

C2 = 0 in the refraction formalism requires that A now vanish; hence,

we require that

n cos y - K sin y= 0

tan y0 = n/K +

10J. S. Stratton, Electromagnetic Theory, McGraw Hill, Inc. (1941),

p 502.
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as K 0; hence, a 0, 'y = m/2, A =0, and

0

Cos 61= -B/(O1

sin el O/= OJ2

tane0 =-B/iB0 Ex/E

where B0 is B =B 0 given by (33). In this case Tr/2 (pure forward)

and Ip=0. Defining the complex refraction angle as
2

6 = -ie +

where e is a real angle, one finds sin e = cosh 0 r' Cos e 1

i sinh Or, and

= -coth1 1 Bo

Ij.hence, cos 6 + sin 206 = 1 is just 2 B 2 11 E W 2, true under
1 1 0 0 1

c2 2 + 2 B2 beas 1
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I shall digress for just a moment to give a general proof of the

absolute condition in the dispersion-relation solution. The claim is

that, in general (for any I ), equation (41) is

Re(cos 2 + sin2 eI) = (60)

which is identical to

Icos 2  1 + sin 0 I = 1 (61)1 1

The proof is immediate from (46) and (47) with cos 81 = -n + inIx1 rx I•

sin 61 = nrz - iniz. We can verify easily that (60) is identical to

(61) because (nrzniz + n rxnI 1
2 = 0 as a result of using (43) and (44)

in elimination. Thus, for E > 0, the absolute elimination of (43)

means only that Q is positive.

To obtain S and finish the lossless solution we must avoid taking

the limit E2 + 0 directly in S2 (57). The convenient additional equation

is the k 2 norm from equation (58) or

2 2 2 -1
+ BO = 1O 0 E 1  

(62)

Thus, since J8 01 01 22Q, one has
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P= B02 2 11/2
0= - B0  •

On expressing the left-hand side of the last equation exactly as p0 was

first given above (between eq (59) and (60)) and then eliminating B0

using (62), we find

1262 - OS2
1 11/2 = 0PO lW2Q)

1/ 2

2 2 -1 012

Solving uniquely -262 + P 0 1 0 w one obtains

= P20C1 2 + [1 + a4/(O 10E 2 2 ]1 / 2  (63)

(since S is real and the plus sign is unique to Q positive definite).

In the IXg 1 negligible high-frequency regime, w (W060)1/2 and equa-

tion (63) becomes

1- (E 0 /E I + (E0/E 1)
2 /2 (64)

The Q of equation (64) is close to 1 for real soil having e0/E I  1/6 or

so at high frequency.

In real soil, however, high-frequency a and S can have a slight

effect on the soil fields (as if a = 0) yet a can be still appreciable

unless c/E is sufficiently small. In order to see wha.t constitutes
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small E 2/C , the following high-frequency approximations to R and Xg

are useful:

'high = w 1 (0/ 1  ( 2/€i)(3/2), W/c > 1, C2 /E < 1, C1 /E ) 5, (65)

Xhigh = -w 1 ( 0 /C 1 )1 / 2  . (66)

The w/c ) 1 stipulation is essential so that B is sufficiently large.

These rough estimates are good to about 20 percent or better if

(3/2)(E 1/Co0-3/
2w-1 ( I oC01/ 2(wie) -1 < 0.1 • (67)

At high frequencies, these estimates improve to a few percentage points

(factor (68) should be used in X ). As frequency increases, C /E be-
g 2 1

comes smaller.1 1  Hence, 8 w/c, and a : (w/c) sin (R /2wke). The

estimates come from equation (44), dropping a and 8, and using A2 + B2

= clw0  
2 (where Q = 1). This yields

Ahigh = 0.5 O00/,1)
1/2

Big W(W E 131/2, 1E, E
Bhigh 1 (OII2 E:

11C. L. Longmire and K. S. Smith, A Universal Impedance for Soils,
Defense Nuclear Agency, Topical Report DNA-3788T (October 1975).
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thus equations (65) and (66) can be obtained from equations (30) and

(31). Incidentally, taking 2 = 0, tan = /A, a w/c, and using

Ahigh for A, we find directly from (57) that -/2  (1 + 4 E 0 /C
-/2

1 + 0 /2EI, in agreement with Q_2 from (64) to leading order

in 0/E. Since (66) is entirely independent of e 2' X should come

from -wwe X = B In (33) we should retain the X term, however,
1ig 0 e

82Th
as a is not quite negligible with respect to calculating Xg. The

result is simply an ad-itional factor of

(1 - /E0 :1
) 1/ 2 , 1 - c0/2c1 (68)

on the right-hand side of equation (66). Finally, with (67) well satis-

fied, R is essentially entirely due to ohmic loss. The tendency at

high frequency as c2/E 1 diminishes is for a to be purely ohmic while B

is purely reactive. The surprising feature of real soil is that a can

be appreciable and yet c2 /E can be small in a "lossless" situation.

As for low-frequency approximations, we again drop a and a in (44),

taking A = B. The familiar result for Rg = Xg is

Rlow =Xow = (i 0 /2aJ
1/ 2w- I

. (69)

The approximation can be good (better than -10 percent) only for £2/61 )

10.
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4. PURELY VECTOR-POTENTIAL MODEL OF TM TRANSMISSION LINE

It is of considerable qualitative interest to obtain the section 2

Z and soil field model from a purely vector-potential TM formulation of
g

the wire-over-ground problem. In our region of macroscopic electro-

+
dynamics, V-D = 0 everywhere; hence, no scalar potential need be intro-

duced explicitly (it is zero).

+ +
Because V-A = 0, we first consider a TM vector potential A in

region 1 (air) volume that is purely radial. The radial electric field

+
E-r = E (where rr is outward from the wire) is
- -r

CV
-iwA = =E ' (70)

-ri 27r E: r -r

where

-ik z

the wave dependence is e e , implicit in V of equation (15a),

r = [(x - h)2 + y21/2 ,and

A is the incident vector potential due solely to the current I on

the wire.
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The boundary condition at the wire surface is satisfied by equation

(70), which yields normal D or free CV waves at the wire; V is

specified as in section 2. This must be so since k = 0 andz

(curl H) r 0 in the wire (TM); hence, E at the wire surface jumps- r -r

abruptly to an exceedingly small value inside the metal.

4
The reaction A at x = 0 must be added to equation (70). Because the

reaction must instantaneously yield only D at x = 0 and every y point,-X

the reflection or reaction symmetry of the divergenceless axial vector

A r must be opposite that of an optical mirror reflection of the vectorr

arrow, so that y projections cancel in the sum and Ey = 0 identically

over x = 0. Then the normal projection of equation (70) is doubled

at x = 0:

- 2 hA (r 0 )i -r
A = 0  (71)

where r0 = (h
2 + y2)1/2. If we integrate normal D over y at x = 0,0 -X

from equation (71), we obtain

2hEoiA dy
-C i: C 0 r-rl (72)

-6 r 0

which is exactly satisfied on inserting (70).
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The integrand of (72) is a transverse magnetostatic y distribution,

so that

2h (-CV)
_ , = 27(h 2 + y 2

Hence, H (O,y) has a distribution like that of (73), with -CV replaced

by -I. To obtain this result, we substitute -CV = -k I/w into equation

(73), and use D (0,y) = k H (0,y)/w from (12). We can use equation-x z-y

(73) to verify (10), since 0.5Dx (0,0)w = -CV, where 0.5D (0,0) is the-- -X

"conserved mean planar field," that is, w 1 fdy Dx (O,y). A similar

mean value definition applies to E and H also. The consistency-z -y

check here is that in the contact limit h = a, the following conditions

hold: w = 27a and D (0,0) -2CV/w, as shown by equation (73); thus,-x-

Dx(0,0)/2 -CV/w is the negative (r.x = -1) of the radial w uniform

D around the wire (D is also the mean value). The line wave connec--r -r

tion to the region 2 soil fields of section 2 is now complete from the

air-side approach to x = 0. One can obtain all field amplitudes from

H (described in (20) and below (11)), since we find from equation-yg

(10), equation (73), and H (0,0) = wD (0,0)/k that-y -x z

H we k 1[0.5Ex(0,0) ] = -wk -1c-1
06_ [yg 0 C-w

where C0 1xl(0,0) = D (0,0). The essential explicit minus sign of

H results in a Poynting flux density E (0,y)H*(0,y) into the ground.
y -z 4y
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Let us now show that £ e' Zi , and Z are already included in the TM

model in a "consistently exact" way. At the wire and conductor sur-

faces, two kinds of z-component vector-potential surface A are pres--zs

ent: (1) A , which is the £ I contribution, and (2) A zs2, for whiche-s -ze-

-iwA is the surface electric field in the surface-impedance boundary-zs2

condition.

At the wire surface we have surface H = Hi4, where

3rl 3zs2
0-i z r + r a (74a)

and

P D r a (74b)! -i Dr '"

We may obtain our results from equations (74a) and (74b) with r locally

free and then pass to r = a. The radial A rl derivative from equation

(70) is

-rl C (-iwXeI - Z.I) r + a , (75)• -i zI=-
-'w z 21T 0r e-2 0 r

where the parentheses in equation (75) contain the part (linear super-

* position) of aV/az that contributes locally at the wire surface. The

first term in equation (75), along with (70), contributes poti, where
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I
H. , r=a
-i 2ir

As a Taylor expansion shows, A zs2 cannot change H locally--nor hence

anywhere else--inside an air-medium pillbox at the surface that

collapses to zero radial thickness. The second term in equation (75)

thus must cancel -iw(A zs2/3r) from equation (74a). This yields

Z.I(-£nr + D)1-

Ezwire = -iwzs2 f , r = a , (76)
g

where C = 2c0 /fg. The correct result (independent of f ) in equation

(76) follows if constant D is adjusted so that f = £n(2h/a). Theg

remaining A zs must necessarily satisfy (74b). This result, where

H. is as given above and constant D is as in (76), gives-1

Azsl = I , (77)-zl e-

where Xe = 0f g/
2n. Clearly, A zs has an ignorable (zero) local induc-

tion contribution to £ in the pillbox argument, and the sum of equa-e

tions (74a) and (74b) is obviously not meaningful (H wire * 2H).

At the ground surface x = 0, the surface vector potential must

be A =0; this condition is required so that local A yields a
-ze1 -zS1

zero contribution to equation (77) from a surface integral over x = 0.
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Similarly, at x = 0 we have

aA aA

-zs2 -x0 y x + --z-(78a)
P~oty =- ax a az

and

aA-zs 1
0 H(0,y) Z ax " (78b)

The A dezivative is, in general, for arbitrary y,-X

aA
_- Zg(79)

ai -z =ier2 (ixe I- 91)()
0 0

Equation (79) follows from A X above, (71), (70) and aV/az acting local-

ly at x = 0.

The aA /3z contribution from the second right-hand term of equation

(79) must cancel with -(A zs2/ax) in (78a). Actually, our inclusion of

the cancelling terms in the equations is not necessary, since only the

one-line boundary condition (Az in eq (23)) at x = 0, y = 0 must

result. The "cancellation at a point" condition results in Czs2/ax =

-(2rfgHy (O,y)Z g from the air side, where = -iwAzs 2 and y 0 are

implied. Assuming that H (0,y)z = E (0,y)w and solving the last!-y g -z

derivative equation radially by way of a/ax = (-h/r)(a/ar) on E (r),-zs2

where E (0,y) = E (0,0)h 2/r 2 , we find
-Z -Z
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E (0,0)

Es(r) = (nr + D) . (80)
-zs2 _F_

g

Thus equation (80) is the identity E (0,0) as r + r(0,0) = h, where
-z

D = Xn2 - £na. The remaining A x/3z contribution from equation (79)

yields p0Hy(O,y), thus entirely satifying equation (78a).

Analogous to (74b), equation (78b) simply defines the local normal

derivative of A zs1* zsl is again ignorable.

It is obvious that f = £n(2h/a) is not required for model consist-g

ency. In fact we must replace this 2. with the 2. resulting from thee e

more exact

f= X!I+ 2 
1 1/2~ (81)

g (a LRa/ 1/

The origin of air volume I. can be attributed to a linearly super-e

posed vector potential A Zz that contributes the surface A consid-

ered previously. Let subscript t denote transverse plane vector

components. Then V = Vt + (a
2/az2J. The vector potential Azi

-ikz zw

carries the suppressed e e dependence. A Z satisfies the

everywhere instantaneous Faraday Law

Vtx(-iwA z) = -iWo +
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where H0t = Evidently the wave equation (V2 + k2J =whreHot 1

0 = V2F is satisfied for F = AzH0t and V.( Et where =

-iwA Z z . The last example shows that A zZ is a source-free,

ignorable divergence axial vector; hence, the "incident plus reaction"

boundary conition A zs = 0 necessarily is required at x = 0 in solv-

2 V+
ing V A = 0. We may note that A Z creates zero H ; hence .H0 =

+

VtH t = 0. Thus, V-H = 0 is satisfied completely in the TM model.

The meaning of Vt.H =0 is that 2A /ax 3y is the identity, plac-
t-ot Z

ing no restriction on A .-zi

A useful boundary relation at wire surface is

PeI a[curl(AzZ)].t

f f ,(82)

9 g

where t is the tangent vector along a wire cross-section perimeter (A-zi

is TM uniform in * at the wire surface). A numerical solution is not

necessary, because the standard circular equipotential approximate

solution (vector-potential version 12 )  of V2 A 0 here results in a

surface potential value A z = D f constant on the circle of wire

surface (f is defined in eq (81)). We may construct a locally La-

placian wire coordinate-system solution for r = a of A = Df ga/r,-z-"-0z g

and with 0[curl(A 1z)] + -(%1z/3r), the boundary relation (82) yields

20 = P01/21 as r + a.

12See, for example, S. Ramo and J. R. Whinnery, Fields and Waves in
Modern Radio, second edition, John Wiley and Sons, Inc. (1953), p 138.
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Equations (78b) and (74b), where H0t = t,, reveal that H0t alone

must yield the correct H in the air volume that is continuous in the

tangential component at the wire surface and at the x = 0 surface, on

approach to the surfaces from the air. Clearly, then, H (r)4 =i

I /2wr, where H.(r) =0I(3Arl /3z). This result is nonzero only at

r = a and r = r0 . The total H. at x = 0 is 2Hi(r0), and H (0,y) is in-
-y

deed the y projection 2H.(r 0 )c.y D0 (Ax/3z)l, where °y= -h/r0 ,

and where (aAl/az)1  comes entirely from the noncancelled first right-

hand term of (79). That H. and hence A must vanish in the air

2 2 2
volume follows from curl curl(Hi) = 2 HO/az = W 0 e0H i and curl

2 2
curl Arr = -2A rlr/az = 0. The propagating kz dependence of H tis

essential.

In the TM vector-potential model, A r' as well as A rl/az, is actu-

ally zero in the air volume, with A r in normal D also entering the

model only as wire and x = 0 surface values. The air volume vanishing

of A rl is absolutely essential physically; otherwise, at x = 0 + c (e

is infinitesimal) there is an additional (to eq (73)) D contribution,-x

kz 12 where A = -hA /r in 3A /3z. This false D , which
z x 0-X1 -ri 0 -x1 _

is made continuous (suppose superposition) with a D from the soil,~-x

* requires common air-soil k = U 0 The surface curl,

(curl H 3 = iwD (0,y), is continuous in 9H az at x = 0 when

Hot = H (0,y). The remaining x = 0 curls of H are -0t)Z = 0

(where A zet 0) and (curl H t y = 0 (normal H t vanishes). At the
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wire, taking H0to only, we similarly find (curl H Ot)r continuous,

(curl Ht) = 0 and (curl Ht) z = (1/r)(a/Dr)(rH o) zero with local

H = I/27r, r = a.

In the vector-potential model, the Neumann analog tangential H. is-1

redundantly equal to the Dirichlet H0t at wire surface and x = 0. We

can conclude from the uniqueness theorem that the H t resulting from

V A = 0 must yield the identical A if the Dirichlet H is pre-
t-z 1 -zi - t

scribed as a surface-tangential H condition, thus defining the Neumann

problem. The Neumann problem then becomes a straw man that need not be

considered.

There is, however, still an unresolved question concerning the exact

D (0,y) distribution that is dependent on approximations made in solv--X

ing the Dirichlet Azl problem. It must be true that equation (73) is

correct since the traveling-wave vector-potential solution is physically

unique already. A complementary (to the £ solution) standard approxi-e

mate capacitance solution 1 2 can be devised that yields what we call the

exact capacitance C, based on a circular equipotential at the wire

surface; however, this solution cannot predict the distribution equation

* (73) as h/a + 1, since both static formulations result in equation (73)

2 with h replaced by do = a[(h/a)2 - if 1 2 and w = 2,d 0 . A vanishing

12 See, for example, S. Ramo and J. R. Whinnery, Fields and Waves in
Modern Radio, second edition, John Wiley and Sons, Inc. (1953), p 138.
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w as h/a + 1 is, of course, absurd. One has to give up h/a 1 1 to

recover d. + h and suppose that a + 0 for h/a fixed infinitesimal.

Althouqh this is not a proof of the exactness of equation (73) with

respect to fq, we can show formally in a special case that f of (81)

arises from equation (73) and the unit-voltaqe line-charqe Green func-

tion that vanishes at the observer's location where the source is at the

oriqin, namely

P2 + p0 - 2pp0 cos -
In 0 h02

-go = -2 h2 o)/)
-o0 

fg

where p is the observer pp 0 source coordinate with respect to a wire-

based coordinate system. We calculate the (vanishing) transverse deri-

vative at x = 0, y = 0,

--- yD (0,0) = -fc dy' 92-0 (0,y,) ,(F34)

-YO ay -x

by taking equation (73) for both D and D . Taking p h, 4 = 0, and-y -

3G 0/ay = VG*.y, we may replace the last equation with I = -Idp0

di0P0 cos
2 *0 sin 0 aG0/ap[6(, 0 )P_']. .f sin is substituted for

sin 4 and coordinate p0 for p in the Go derivative, the result is
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fg = f du 2  
- /2

where u = h/a; hence, f is the limit h/a + 1 of equation (81), becauseg

of £n(1/1).

The TM model predicts that the TE-related amplitudes of

Hx' Ey, and H z are exactly zero. A formal continuous y-integrated

matching of assumed soil H and H at x = 0 (with air fields arising-x -Z

from Cartesian components due solely to surface A i) results in soil-ri

field amplitudes H and H being dependent solely on the E amplitude-x -z -y

(since k = 0). Thus, the formal antisymmetry in y of H and H in they -x -z

air from A rl is not the actual reason that the y-integrated amplitudes

vanish. The vanishing is due to the stronger condition of pointwise

vanishing required of E . The vector-potential A 1 produces zero H-y -l-x

because of the vanishing of aA l/ay at x = 0.

It is natural that the TM model can create no TE waves, since the y

antisymmetry in E and Hx is in fact just the opposite of the true
y

symmetry in Ey and Hx at x = 0 that would arise from ground reaction of

the circularly uniform A, vector-potential component. This symmetry

yields a forward Poynting flux down the line from Ey and Hx . Observe,

however, that if we examine (curl H) inside the metal wire, kz = 0

again forces Hr to jump as Er did in the TM case. The wire surface
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value of Hr must then be exceedingly small. H r is an axial vector;r

hence, Hy from such an H r is also opposite the TM symmetry in y at x

0.

At the same time, (curl H) in the metal wire cannot yield "zero" Er r

unless aH / 4 is "zero" or circularly uniform H But then E must,
z Z 4

from (curl H),, also have the circular uniformity of H at th- metal

surface. Now E comes from vector potential A , which thus contributes

consistently zero divergence to V.A = 0. Consequently, the H from Az 4

is "zero" because 4 is uniform.

If H and H are "zero," the E is also "zero" at the wire surface;z r 4

hence, 4-uniform TE excitations should be negligibly produced by the

wire. Non-0-uniform excitations should be negligibly excited unler

electrically thin wire conditions, in the absence of line discontinui-

ties.

It is peculiar in the Wait wire-over-ground formulation 2 that the

field components H , E , and H are present, yet the only wire boundary-x -y -z

condition is that E = 0 along the wire. How then can the TM excitation-z

from the wire excite these TE components by way of ground interdction?

The answer to the question is that the Wait formulation should not allow

2James R. Wait, Radio Science, 7, No. 6 (June 1972), 675-679.
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nonzero H , E , and H • We can find no error in the following proce--x -y -z

dure. Take the y derivatives given in Wait's paper 2 under the sign and

integrate fields over dy from -- to -; this yields a 6 function to be

integrated over X, that is, 6(k y ), k = X = 0. Assume that W, = 2 =

P0" The field continuity at x 0 then yields the result M(0) = -N(0)

(from three equations stating the H , H , and E continuity). Hence, it-x -z -y

follows immediately that M(O) = N(O) = 0 and that H , HI and E are-x -z -y

identically zero pointwise over x = 0. The normal D continuity-X

yields (redundantly)

2 _ 23 - 3)
02 2

£2 £2

2 2
where E = E and E2 = E and 0 is the negative of our y . If we-1 air -2 soil

require that (E3 _ E3) =K(E1 -_ 2, the solution of the last equation
1 2 2 -2(

is K = E and 22 = P0W 2 I = k . But then Ez = (k - 2), = 0-1 -2 0 1 p-~ - 2

everywhere. This result can be understood in the implied lossless case

-1 ) since a lossless TE solution has zero axial electric field.

The above A = 0 modification of the Wait formulation yields (be-

fore we set £ = £2) the result that
-1 -2

2James R. Wait, Radio Science, 7, No. 6 (June 1972), 675-679.
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dy E,(0,y) _(Po2 - 2)1/2 fi + R(0)1
00=

dy Hy (O,y) E W[ - R(0)]

But we require R(0) = 0 (actually 1 - R(0) = T(0) + 1), so that

H = H at x 0 results* in f dy = -I; hence, the Hertz poten-

tial 7 in Wait's formulation can result formally in our Zg, except

that E soil in our Z is replaced by cair

A final remark concerning the vector-potential model: the additive

+ +
ground interaction of H with respect to the incident wire H will not

allow what is sometimes called an "antenna mode" with co-directional

wire current I and return current f' dy fo. dx(iwEE) ,  So long

as k is zero in the air, the transmission-line solution seems to be the

solution to the free-wave wire-over-ground problem.

5. CONCLUDING REMARKS

Although there is, at present, a lack of suitable cw data for a(J)

and 8(w) concerning wires close to earth, we have some limited evidence

that our Z is realistic. Gray 7 has reported propagation velocities• g

versus wire height over earth, experimentally deduced from timing of

7R. F. Gray, Nuclear Electromagnetic Pulse Simulation by Point Source

Injection Techniques for Shielded and Unshielded Penetrations, Harry
Diamond Laboratories, HDL-TR-1737 (December 1975).

*The coefficient of the Hertz potentials given by Wait (ref 2) fol-

lowing equation (8) is incorrect and should be multiplied by a factor
of 2.
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reflection pulses at cable center on an open 40-ft-long cable of radius

1 cm. Using a semi-empirical e(w),11 ignoring dispersion, and taking

frequency f = 107 Hz, we find an w/co of 0.59, compared to measured 0.55

at h = 0.05 m with a soil moisture content of 50 percent. Our w/ca

result closely follows the measured result upward in height (<I m) to

within 10 percent, the high-line agreement being (always) accurately 1.

11C. L. Longmire and K. S. Smith, A Universal Impedance for Soils,
Defense Nuclear Agency, Topical Report DNA-3788T (October 1975).
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APPENDIX A.--DERIVATION OF EQUATION (3)
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APPENDIX A

The body of this report addresses the problem of calculating the

response of a horizontal wire over earth to incident electromagnetic

fields. In an approximate solution of this problem, the wire over earth

is regarded as a transmission line; the basic unknown in this solution

is the relationship between the line waves and the electromagnetic

fields in the earth: that is, the surface impedance of the ground

plane.

Equation (3) in the body of the report describes Zg, the per-unit-

length surface impedance of the finite conducting earth. In this

appendix we derive equation (3) by solving equation (21) self-

consistently with y2 , where y is the line propagation constant and a

function of Zg . See section 2 in the body of the report for a detailed

description of the model and definitions of symbols.

Inserting equation (1) into equation (21) and squaring gives

2 1 2
Z + c e Zg -c2e =0 • (A-i)

The parameters ci, Oil c2 ' and *2 are given in equations (4) through

(10) in the body of the paper. Basically, we can solve (A-i) at

the point *I = *2 = 0 (this is a physical solution for cI = C2 and

i + I = 10 )1 We can then analytically continue the resulting
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Z 9to the desired parameters, 
having verified that the 12/ 1> limit

of Z 9is physically correct.

Proceeding algebraically, with 2 0 understood, we solve

(A-i) and find

0.5c e [-1 + (1 + 4c e 
-c /1(2)

g 1 c2 . C(

where

= '2 - 240 1 
(A-3)

(The positive root sign 
is correct, as later shown.) Now equation (A-2)

gives

Z = -0.5c 1cos 01+ 0. 5c IA 0Cos [1+ 0.5 tan-
1 ()

(A-4)

+4 i(-0.5c1 sin 0+ 0.5c1 A0i + 0.5 tan- (r)])

with

A = + c2 cos 1/~) 2 16~
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and

r 4c2 sin I/(c + 4c 2 cos )

From (A-4) we verify that

Rg(1 - i/2) = Xg(I(01)

which is the identical phase-following behavior cf

Zg = 1ZI Ocos [0 + 6(02)] + i sin [01 + 6($2)1 (A-5)

At = 0 we can determine the functional form (42) of the phase shift

6, if we require that

6 + = 0, x = 0 . (A-6)g

From (A-6) and (A-3) we find immediately

: 6 = -05-0.5 (A-7)

Furthermore, with cos (0) = 1 (where 0 = 0) we have from (A-2), just

Z.I = 0.5c,[-1 + (1 + 4c 2/cl)1 , (A-8)

g 6
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which, together with equations (A-5) and (A-7), yields the general

solution (3) given in the text.

If C2/eC >> 1, =2 = r/2, and c2 = 1o/w 2o (where c 2/c > ),

we see that equation (3) gives (with negligible error) just

wZg + (.Cfp 01/a1/2(l + i) ;

this is the familiar textbook one-dimensional result which can also be

2.
obtained (to the same approximation) by simply dropping y in equation

(21), given that e2/1 >> 1.
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In the body of the text we showed that the electromagnetic fields in
+

the earth er inhomogeneous plane waves with wave vector k =

+ . + r 2 +2 2
0m - ia0n. The square k factors to k 2 where Qu is the

+2
unsigned Q such that Q = IQu 1. The imaginary part of the k dispersion

+ +2._ 2

relation is -2a 00 mni = V -iW2)2u; this requires that Qu + Q since,
2 2

for example,0 2< a 2 and Qu < 0, because A < B in the metal limit
0 0

+2 w2 Qhstecretslio
where a 0. We showed that k = U02 has the correct solution

+2 +2 2+2
because n= 1 in k = k 1nl; this results in the other half of the

2 2 2
dispersion relation solution being 50 - a0 = 0W  . If we take the

2 2
absolute value of 80 - a0' this last equality allows £2 + Q to have0u

the same consequence as the real part of k = W Q02 taken as an abso-u

lute-value equality.

In order to solve explicitly for Q, however, it is necessary to

observe that equation (52) holds; also, equation (50) follows from the

Poynting divergence relation.

To derive equation (52) we note that the factorization of Qu

in k changes no physical result. Thus we must first factor out £2
u

+2from k in the equation of squared amplitudes that is formed from the
+

squared Maxwell curl E equation, namely

£21+2+2
+2 U -

H - B1
- 2 2(B-)

U0
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so that - u0 2 in equation (B-i) gives

E2
2= - (B-2)

- o0

Equation (B-2) also results from the squared Maxwell curl H equation

with factored Q2 k again substituted for k In the homogeneous waveu

+ ++2 cw2beos
equation solutions for E and H, the vanishing factor k _ becomes

-1+2 2 +2 2
Q2 k - j CW = 0 if k = 0 W Q. It is then true that

U 0 0 u

+21= S1+12 B-3)

since substituting equation (B-3) into the absolute value of either

equation (B-i) or equation (B-2) yields the same factorization-

independent result, namely,

IEi2 = W o0 
2

+ 2 1+21
IHI Ik

+2 +2
which is the first equality in equation (52); IH 2 = IAI

From the two Maxwell equations and equation (B-3) we also find
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in which the curl H equation (curl E equation) is used in the right

(left) side of the last equation. Thus, the consequence is

+2 +2 4 2 21 I ki = W 4I F 1 , (B-4)

which is truly independent of Q from the vector norms of equation (58).
+ +

We then use the n r,nI formalism to evaluate (B-4), i.e.,

+ + +k =k "-"ik ,
I

+ I1/2 (n
r j =  Ln - snl)

kr 10 W~nr ICj

+ 1/2 + +
ki 11 j'W(Kn r+ nnj)

kI 0 r I

where nr and n are equations (46) and (47), respectively. We then find

+2 +2 -2
n+ n I (B-5)

Further evaluating equation (B-5), we find

1 1 = (A2 + B2 + 2+ a 2J(n2 +2)/,,2 2 •(B-6)

This result proves, in fact, our assertion (52), since the norm is

unique to equations (B-6) and (58). We saw from the beginning, in the
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complex index of refraction development, that Q cancels out formally,

+

giving an algebraic identity between k forms.

The point is that equation (B-5) must evidently be true

independently; therefore Q2 factors out in (B-5) leaving the remaining

2 2
explicit Q dependence entirely in n + K = jJcS in equation (B-7).

The squared E norm relation above shows that Q = 1 can only be true

+

if E has one vector component.
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